In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only a few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here, we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripeningan important developmental process unique to plants. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomato.active DNA demethylation | DNA glycosylase lyase | epigenetic | tomato | fruit ripening G enomic DNA methylation is a major epigenetic mark that is instrumental to many aspects of chromatin function, including gene expression, transposon silencing, or DNA recombination (1-4). In plants, DNA methylation can occur at cytosine both in symmetrical (CG or CHG) and nonsymmetrical (CHH) contexts and is controlled by three classes of DNA methyltransferases, namely, the DNA Methyltransferase 1, Chromomethylases, and the Domain Rearranged Methyltransferases (5-7). Indeed, in all organisms, cytosine methylation can be passively lost after DNA replication in the absence of methyltransferase activity (1). However, plants can also actively demethylate DNA via the action of DNA GlycosylaseLyases, the so-called DEMETER-Like DNA demethylases (DMLs), that remove methylated cytosine, which is then replaced by a nonmethylated cytosine (8