Key words: Plasmodium falciparum -malaria -fosmidomycin -isoprenoid biosynthesis -real time polymerase chain reaction Malaria is a leading cause of morbidity and mortality in the tropical regions, with 300 to 500 million clinical cases and 1.5 to 2.7 million deaths per year (Snow et al. 2005). With the availability of the complete genome sequence from Plasmodium falciparum, increasing attention has focused on transcript profiling and proteomic analyses of the parasite stages responsible for severe disease and pathogenesis in humans (Florens et al. 2002, Bozdech et al. 2003, Le Roch et al. 2003, Nirmalan et al. 2004, Llinas et al. 2006.Two different biosynthetic routes are used to produce isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) for isoprenoid biosynthesis including ubiquinones, dolichols and the prenylation of proteins (Sacchettini & Poulter 1997, Sinensky 2000, Barkovich & Liao 2001. In mammals, plants (cytoplasm), fungi, some bacteria and several protozoa, the isoprenic units are derived from the classical mevalonate pathway (Goldstein & Brown 1990). In plastids of plants, several algae, eubacteria, cyanobacteria and apicomplexa (apicoplast), the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway produces IPP and DMAPP (Rohmer 1999). The MEP pathway starts with the condensation of pyruvate and glyceraldehyde-3-phosphate (GAP), which yields 1-deoxy-D-xylulose-5-phosphate (DOXP) catalyzed by DOXP synthase (DXS); for reviews see references (Lichtenthaler 1999, Rohmer 1999, Eisenreich et al. 2004, Rodriguez-Concepcion 2004. DOXP reductoisomerase (DXR) then catalyzes the intramolecular rearrangement and reduction of DOXP to MEP. The activity of this enzyme is specifically inhibited by fosmidomycin (Kuzuyama et al. 1998). Several subsequent reaction steps are necessary for the conversion of MEP to IPP and DMAPP (Fig. 1).Discovery of the MEP pathway for isoprenoid biosynthesis in P. falciparum revealed several antimalarial drug targets (Jomaa et al. 1999). Jomaa and co-workers demonstrated that fosmidomycin and its derivate FR900098, are able to inhibit the growth of P. falciparum in culture and to cure mice infected with the related malaria parasite, P. vinckei (Jomaa et al. 1999). Recent field trials in humans have also demonstrated the effectiveness of fosmidomycin in the treatment of human malarial infections, but it has to be administered for more than four days when used alone (Missinou et al. 2002, Borrmann et al. 2005. Recently, biochemical and mass spectrometric analyses revealed that the MEP pathway is functionally active in all intraerythrocytic stages of P. falciparum (Cassera et al. 2004).In this study we characterized the effect of fosmidomycin on the metabolic levels of each intermediate of the MEP pathway as well as dolichol and ubiquino- nes in ring, trophozoite and schizont stages of P. falciparum parasites and correlated these to the steadystate MEP enzyme transcript levels under drug pressure.
MATERIALS AND METHODSExperimental design -Three characteristic developmental sta...