Tautomeric isomers and conformers of 2-nitrovinyl alcohol (1), 2-nitrovinylamine (2), and 1-nitro-propene (3) are reported at the MP2 and B3LYP levels of theory, using the 6-31G* basis set, with energy evaluation at B3LYP/6-311+G** and G2MP2. The nitroalkenes are the global minima on their respective potential energy surfaces. The barriers for the concerted 1,5-H transfer to the corresponding nitronic acids amount to only 5.0 kcal/mol for 1, 13.2 kcal/mol for 2, and a sizable 37.8 kcal/mol for 3. Whereas the aci-nitro tautomer of 2-nitrovinyl alcohol is easily accessible, beta-iminonitronic acid has little kinetic stability. H-bonding is a strong stabilizing factor in these nitroalkenes, estimated at 7.0 and 3.7 kcal/mol for the OH and NH2 derivatives, respectively, while its stabilization in their nitronic acids amounts to as much as 13 kcal/mol. The H-bonds are evident from the very short O...H and N...H distances and are characterized by bond critical points. The NO2 substituent effect of about 11.4 kcal/mol at G2MP2 on both the classical keto <==> enol and imine <==> enamine tautomeric processes stabilizes the nitroethylene derivatives. The keto, imine, and vinyl substituent effects at G2MP2 on the nitro <==> aci-nitro tautomeric process are also determined as are their pi-resonance components. The substituents have a large influence on the ionization energies of the nitroethylene derivatives.