The MgaSpn Global Transcriptional Regulator Mediates the Biosynthesis of Capsular Polysaccharides and Affects Virulence via the Uracil Synthesis Pathway in Streptococcus pneumoniae
Xinlin Guo,
shuhui wang,
Ye Tao
et al.
Abstract:Background
Uracil metabolism is an important step in the growth and metabolism of Streptococcus pneumoniae, and pyrimidine nucleotides play an important role in the expression and production of S. pneumoniae capsules. MgaSpn(spd_1587),as a transcriptional ragulator of host environment adaptation, regulates the biosynthesis of the capsules and phosphorylcholine. However, the underlying regulation mechanism between uracil metabolism and biosynthesis of capsules remains incompletely understood. Here, we first de… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.