Signals controlling the intracellular targeting of many membrane proteins are present as short sequences within their cytoplasmic domains. P-selectin is a type I membrane protein receptor for leukocytes, acting during the inflammation response. Heterologous expression experiments have demonstrated that its 35-residue cytoplasmic tail contains signals for targeting to synaptic-like microvesicles, dense-cored granules, and lysosomes. We have examined the lysosomal targeting information present within the cytoplasmic tail by sitedirected mutagenesis of horseradish peroxidase-P-selectin chimeras followed by transient transfection in H.Ep.2 cells. Assaying lysosomal targeting by subcellular fractionation as well as intracellular proteolysis, we have discovered a novel lysosomal targeting signal, KCPL, located within the C1 domain of the cytoplasmic tail. Alanine substitution of this tetrapeptide reduced lysosomal targeting to the level of a tailless horseradish peroxidase-P-selectin chimera, which was previously found to be deficient in both internalization and delivery to lysosomes. A proline residue within this lysosomal targeting signal makes a major contribution to the efficiency of lysosomal targeting. A diaminobenzidine density shift procedure established that chimeras with an inactivated KCPL sequence are present within transferrin-positive compartments. Such a mutant also displays an increased level of expression at the plasma membrane. Our results indicate that the sequence KCPL within the cytoplasmic tail of P-selectin is a structural element that mediates sorting from endosomes to lysosomes.