Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Selective serotonin reuptake inhibitors (SSRIs) are the most popular antidepressant medications used to manage perinatal mood disturbances, yet our understanding of how they affect the microbiome‐gut‐brain axis of the mother and offspring is limited. The purpose of this study was to determine how peripartum SSRI treatment may prevent the effects of gestational stress on plasticity in the maternal hippocampus, plasticity in the neonatal brain and related changes in gut microbiota. To do this Sprague–Dawley female rats were left untreated or subjected to unpredictable stress during pregnancy. Half of the females were supplemented daily with fluoxetine. On postpartum day 2 brains were collected for measurement of plasticity (neurogenesis and microglia content) in the maternal hippocampus and in the neonatal brain. Glucocorticoid receptor density was also investigated in the maternal hippocampus. Microbiota composition was analyzed in fecal samples of dams during and after pregnancy, and colon tissue samples from offspring on postnatal day 2. Main findings show there are significant changes to the maternal microbiome‐gut‐brain axis that may be fundamental to mediating plasticity in the maternal hippocampus. In addition, there is significant impact of gestational stress on neonatal gut microbiota and brain microglia density, while the effects of SSRIs are limited. This is the first study to explore the impact of gestational stress and SSRIs on the microbiome‐gut‐brain axis in the mother and neonate. Findings from this study will help inform pathways to intervention strategies including stress reduction techniques and/or microbiota targeted nutritional approaches directed towards improving maternal gut health and outcomes for mother and neonate.
Selective serotonin reuptake inhibitors (SSRIs) are the most popular antidepressant medications used to manage perinatal mood disturbances, yet our understanding of how they affect the microbiome‐gut‐brain axis of the mother and offspring is limited. The purpose of this study was to determine how peripartum SSRI treatment may prevent the effects of gestational stress on plasticity in the maternal hippocampus, plasticity in the neonatal brain and related changes in gut microbiota. To do this Sprague–Dawley female rats were left untreated or subjected to unpredictable stress during pregnancy. Half of the females were supplemented daily with fluoxetine. On postpartum day 2 brains were collected for measurement of plasticity (neurogenesis and microglia content) in the maternal hippocampus and in the neonatal brain. Glucocorticoid receptor density was also investigated in the maternal hippocampus. Microbiota composition was analyzed in fecal samples of dams during and after pregnancy, and colon tissue samples from offspring on postnatal day 2. Main findings show there are significant changes to the maternal microbiome‐gut‐brain axis that may be fundamental to mediating plasticity in the maternal hippocampus. In addition, there is significant impact of gestational stress on neonatal gut microbiota and brain microglia density, while the effects of SSRIs are limited. This is the first study to explore the impact of gestational stress and SSRIs on the microbiome‐gut‐brain axis in the mother and neonate. Findings from this study will help inform pathways to intervention strategies including stress reduction techniques and/or microbiota targeted nutritional approaches directed towards improving maternal gut health and outcomes for mother and neonate.
Objective The objective of this scoping review is to review the research evidence regarding the impact of perinatal maternal stress on the maternal and infant gut and human milk microbiomes. Introduction Perinatal stress which refers to psychological stress experienced by individuals during pregnancy and the postpartum period is emerging as a public health concern. Early exposure of infants to perinatal maternal stress can potentially lead to metabolic, immune, and neurobehavioral disorders that extend into adulthood. The role of the gut and human milk microbiome in the microbiome-gut-brain axis as a mechanism of stress transfer has been previously reported. A transfer of colonised aberrant microbiota from mother to infant is proposed to predispose the infant to a pro- inflammatory microbiome with dysregulated metabolic process thereby initiating early risk of chronic diseases. The interplay of perinatal maternal stress and its relationship to the maternal and infant gut and human milk microbiome requires further systematic examination in the literature. Inclusion criteria This scoping review is an exploratory mapping review which will focus on the population of mothers and infants with the exploration of the key concepts of maternal stress and its impact on the maternal and infant gut and human milk microbiome in the context of the perinatal period. It will focus on the pregnancy and the post-natal period up to 6 months with infants who are exclusively breastfed. Methods This study will be guided by the Joanna Briggs Institute’s (JBI) methodology for scoping reviews along with use of the Prisma Scr reporting guideline. A comprehensive search will be conducted using the following databases, CINAHL Complete; MEDLINE; PsycINFO, Web of Science and Scopus. A search strategy with pre-defined inclusion and exclusion criteria will be used to retrieve peer reviewed data published in English from 2014 to present. Screening will involve a three-step process with screening tool checklists. Results will be presented in tabular and narrative summaries, covering thematic concepts and their relationships. This protocol is registered with Open Science Framework DOI 10.17605/OSF.IO/5SRMV.
Neurodevelopmental psychiatric disorders (NPDs) like attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and schizophrenia, affect millions of people worldwide. Despite recent progress in NPD research, much remains to be discovered about their underpinnings, therapeutic targets, effects of biological sex and age. Risk factors influencing brain development and signalling include prenatal inflammation and genetic variation. This dissertation aimed to build upon these findings by combining behavioural, molecular, and neuromorphological investigations in mouse models of such risk factors, i.e. maternal immune activation (MIA), neuron-specific overexpression (OE) of the cytoplasmatic isoforms of the RNA-binding protein RBFOX1, and neuronal deletion of the small Ras GTPase DIRAS2. Maternal infections during pregnancy pose an increased risk for NPDs in the offspring. While viral-like MIA has been previously established elsewhere, this study was the first in our institution to implement the model. I validated NPD-relevant deficits in anxiety- and depression-like behaviours, as well as dose- and sex-specific social deficits in mouse offspring following MIA in early gestation. Proteomic analyses in embryonic and adult hippocampal (HPC) synaptoneurosomes highlighted novel and known targets affected by MIA. Analysis of the embryonic dataset implicated neurodevelopmental disruptions of the lipid, polysaccharide, and glycoprotein metabolism, important for proper membrane function, signalling, and myelination, for NPD-pertinent sequelae. In adulthood, the observed changes encompassed transmembrane trafficking and intracellular signalling, apoptosis, and cytoskeletal organisation pathways. Importantly, 50 proteins altered by MIA in embryonic and adult HPC were enriched in the NPD-relevant synaptic vesicle cycle. A persistently upregulated protein cluster formed a functional network involved in presynaptic signalling and proteins downregulated in embryos but upregulated in adults by MIA were correlated with observed social deficits. 49/50 genes encoding these proteins were significantly associated with NPD- and comorbidity-relevant traits in human phenome-wise association study data for psychiatric phenotypes. These findings highlight NPD-relevant targets for future study and early intervention in at-risk individuals. MIA-evoked changes in the neuroarchitecture of the NPD-relevant HPC and prefrontal cortex (PFC) of male and female mice highlighted sex- and region-specific alterations in dendritic and spine morphology, possibly underlining behavioural phenotypes. To further investigate genetic risk factors of NPDs, I performed a study based on the implications of RBFOX1’s pleiotropic role in neuropsychiatric disorders and previous preclinical findings. Cytoplasmatic OE of RBFOX1, which affects the stability and translation of thousands of targets, was used to disseminate its role in morphology and behaviour. RBFOX1 OE affected dendritic length and branching in the male PFC and led to spine alterations in both PFC and HPC. Due to previously observed ASD-like endophenotypes in our Rbfox1 KO mice and the importance of gene × environment effects on NPD susceptibility, I probed the interaction of cytoplasmatic OE and a low-dose MIA on offspring. Both RBFOX1 OE alone and with MIA led to increased offspring loss during the perinatal period. Preliminary data suggested that RBFOX1 OE × MIA might increase anxiety- and anhedonia-like behaviours. Morphological changes in the adult male OE HPC and PFC suggested increased spine density and reduced dendritic complexity. A small post-mortem study in human dorsolateral PFC of older adults did not reveal significant effects of a common risk variant on RBFOX1 abundance. To expand upon NPD genetic risks, I evaluated the effects of a homo- (KO) or heterozygous (HET) Diras2 deletion in a novel, neuron-specific mouse model. DIRAS2’s function is largely unknown, but it has been associated with ADHD in humans and neurodevelopment in vitro. In adult mice, there were subtle sex-specific effects on behaviour, i.e. more pronounced NPD-relevant deficits in males, in keeping with human data. KO mice had subtly improved cognitive performance, while HET mice exhibited behaviours in line with core ADHD symptoms, e.g. earning difficulties (females), response inhibition deficits and hyperactivity (males), suggesting Diras2 dose-sensitivity and sex-specificity. The morphological findings revealed multiple aberrations in dendritic and spine morphology in the adult PFC, HPC, and amygdala of HET males. KOs changes in spine and dendritic morphology were exclusively in the PFC and largely opposite to those in HETs and NPD-like phenotypes. Region- and genotype-specific expression changes in Diras2 and Diras1 were observed in six relevant brain regions of adult HET and KO females, also revealing differences in the survival and morphology regulator mTOR, which might underlie observed differences. In conclusion, the effects of MIA and partial Diras2 knockdown resembled each other in core, NPD-associated behavioural and morphological phenotypes, while cytoplasmatic RBFOX1 OE and full Diras2 KO differed from those. My findings suggest complex dose- and sex-dependent relationships between these prenatal and genetic interventions, whose NPD-relevant influences might converge onto neurodevelopmental molecular pathways. An assessment of such putative overlap, based on available data from the MIA proteomic analyses of embryonic and adult HPC, suggested the three models might be linked via downstream targets, interactions, and upstream regulators. Future studies should disseminate both distinct and shared aspects of MIA, RBFOX1, and DIRAS2 relevant to NPDs and build upon these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.