2019
DOI: 10.1016/bs.mie.2019.07.010
|View full text |Cite
|
Sign up to set email alerts
|

The microfluidic capture of single breast cancer cells for multi-drug resistance assays

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 16 publications
0
1
0
Order By: Relevance
“…A microfluidic device, developed for the rapid isolation of exosomes produced by multiple drug-resistant cancer cells in response to various therapies, was used to identify the mechanisms of adaptive resistance [274]. Measurements of multidrug resistance in single breast cancer cells, captured in a microfluidic chip, allowed the automated isolation and purification of chemotherapy-resistant drugs [275,276], and crosstalk pathways between breast cancer cells and adipose-derived stem cells that lead to drug resistance were identified via passive diffusion in a two-layer microfluidic device [277]. Thus far, several microfluidic platforms have been successfully applied for the maintenance and expansion of patient-derived tumor cells, spanning diverse cancer types and sources, solid tumors or liquid biopsies (CTCs), for personalized drug screening applications [232].…”
Section: Cancer Resistance To Treatmentmentioning
confidence: 99%
“…A microfluidic device, developed for the rapid isolation of exosomes produced by multiple drug-resistant cancer cells in response to various therapies, was used to identify the mechanisms of adaptive resistance [274]. Measurements of multidrug resistance in single breast cancer cells, captured in a microfluidic chip, allowed the automated isolation and purification of chemotherapy-resistant drugs [275,276], and crosstalk pathways between breast cancer cells and adipose-derived stem cells that lead to drug resistance were identified via passive diffusion in a two-layer microfluidic device [277]. Thus far, several microfluidic platforms have been successfully applied for the maintenance and expansion of patient-derived tumor cells, spanning diverse cancer types and sources, solid tumors or liquid biopsies (CTCs), for personalized drug screening applications [232].…”
Section: Cancer Resistance To Treatmentmentioning
confidence: 99%