Lipid membranes are thin objects that form the main separation structure in cells. They have remarkable mechanical properties; while behaving as a solid shell against bending, they exhibit in-plane fluidity. These two aspects of their mechanics are not only interesting from a physical viewpoint, but also fundamental for their biological function. Indeed, the equilibrium shapes of different organelles in the cell rely on the bending elasticity of lipid membranes. On the other hand, the in-plane fluidity of the membrane is essential in functions such as cell motility, mechano-adaptation, or for the lateral diffusion of proteins and other membrane inclusions. The bending rigidity of membranes can be motivated from microscopic models that account for the stress distribution across the membrane thickness. In particular, the microscopic stress across the membrane is routinely computed from molecular dynamics simulations to investigate how different microscopic features, such as the addition of anesthetics or cholesterol, affect their effective mechanical response. The microscopic stress bridges the gap between the statistical mechanics of a set of point particles, the atoms in a molecular dynamics simulation, and continuum mechanics models. However, we lack an unambiguous definition of the microscopic stress, and different definitions of the microscopic stress suggest different connections between molecular and continuum models. In the first Part of this Thesis, we show that many of the existing definitions of the microscopic stress do not satisfy the most basic balance laws of continuum mechanics, and thus are not physically meaningful. This striking issue has motivated us to propose a new definition of the microscopic stress that complies with these fundamental balance laws. Furthermore, we provide a freely available implementation of our stress definition that can be computed from molecular dynamics simulations (mdstress.org). Our definition of the stress along with our implementation provides a foundation for a meaningful analysis of molecular dynamics simulations from a continuum viewpoint. In addition to lipid membranes, we show the application of our methodology to other important systems, such as defective crystals or fibrous proteins. In the second part of the Thesis, we focus on the continuum modeling of lipid membranes. Because these membranes are continuously brought out-of-equilibrium by biological activity, it is important to go beyond curvature elasticity and describe the internal mechanisms associated with bilayer fluidity. We develop a three-dimensional and non-linear theory and a simulation methodology for the mechanics of lipid membranes, which have been lacking in the field. We base our approach on a general framework for the mechanics of dissipative systems, Onsager's variational principle, and on a careful formulation of the kinematics and balance principles for fluid surfaces. For the simulation of our models, we follow a finite element approach that, however, requires of unconventional dicretization methods due to the non-linear coupling between shape changes and tangent flows on fluid surfaces. Our formulation provides the basis for further investigations of the out-of-equilibrium chemo-mechanics of lipid membranes and other fluid surfaces, such as the cell cortex.
Las membranas lipídicas son estructuras delgadas que forman la separación fundamental de las células. Tienen propiedades físicas notables: mientras que se comportan como láminas delgadas sólidas frente a curvatura, presentan fluidez interfacial. Estos dos aspectos de su mecánica son interesantes desde un punto de vista físico e ingenieril, pero además son fundamentales para su función biológica. Las formas de equilibrio de diferentes organelos celulares dependen de la elasticidad frente a curvatura de la membrana lipídica. Por otro lado, la fluidez interfacial es esencial en funciones como la movilidad celular, la adaptación mecánica a deformaciones, o para la difusión lateral de proteínas. La elasticidad frente a curvatura de las membranas lipídicas puede motivarse a través de modelos microscópicos que tienen en cuenta la distribución de esfuerzos a lo largo del espesor de la membrana. En particular, el tensor de esfuerzos microscópico se calcula habitualmente en simulaciones de dinámica molecular a lo largo del espesor de la membrana para investigar cómo diferentes características microscópicas, como la adición de anestésicos o colesterol, afecta la respuesta mecánica efectiva. El tensor de esfuerzos microscópico tiende un puente entre la mecánica estadística de un conjunto de partículas puntuales, los átomos de una simulación de dinámica molecular, y modelos de mecánica de medios continuos. Sin embargo, no disponemos de una definición única del tensor de esfuerzos microscópico, y diferentes definiciones dan lugar a diferentes interpretaciones de la conexión entre modelos moleculares y continuos. En la primera parte de la tesis, mostramos que muchas de las definiciones del tensor de esfuerzos microscópico no satisfacen las leyes más básicas de la mecánica de medios continuos, y por tanto no son físicamente relevantes. Este problema nos ha motivado a proponer una nueva definición del tensor de esfuerzos microscópicos que cumpla las leyes fundamentales de la mecánica de medios continuos por construcción. Además, hemos desarrollado (y puesto a disposición del público libremente) una implementación numérica de nuestra definición del tensor de esfuerzos microscópico que puede calcularse mediante simulaciones de dinámica molecular (mdstress.org). Nuestra definición del tensor de esfuerzos, así como nuestra implementación del mismo, proporcionan una base sólida para el análisis de simulaciones de dinámica molecular desde un punto de vista continuo. Además de membranas lipídicas, mostramos la aplicación de nuestro método en otros sistemas relevantes, como cristales con defectos o proteínas fibrosas. En la segunda parte de esta tesis nos hemos focalizado en el modelado continuo de membranas lipídicas. Ya que estas membranas están constantemente sufriendo actividad biológica que las lleva fuera de equilibrio, es importante tener en cuenta no sólo la elasticidad de curvatura, sino también los grados de libertad internos asociados a la fluidez de la membrana. Para ello, desarrollamos un nuevo marco teórico y computacional general, tridimensional y no-lineal, para la mecánica de membranas lipídicas. Nuestro enfoque se basa en un marco general para la mecánica de sistemas disipativos, el principio variacional de Onsager, y en una formulación cuidadosa de la cinemática y las ecuaciones de balance para superficies fluídas. Para la simulación de nuestros modelos, seguimos una aproximación basada en elementos finitos que, sin embargo, requiere de métodos no convencionales debido al acoplamiento no-lineal entre cambios de forma y los campos de velocidad tangentes en superficies fluídas. Nuestra formulación proporciona la base para futuras investigaciones de la quimiomecánica fuera de equilibrio de membranas lipídicas y otras superficies fluídas, como el cortex celular