2021
DOI: 10.48550/arxiv.2108.02914
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The minimal genus problem for right angled Artin groups

Abstract: We investigate the minimal genus problem for the second homology of a right angled Artin group (RAAG). Firstly, we present a lower bound for the minimal genus of a second homology class, equal to half the rank of the corresponding cap product matrix. We show that for complete graphs, trees, and complete bipartite graphs, this bound is an equality, and furthermore in these cases the minimal genus can always be realised by a disjoint union of tori. Additionally, we give a full characterisation of classes that ar… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?