The processes involved in the magmatic-hydrothermal transition in rare-element pegmatite crystallization are obscure, and the role of hydrothermal mechanisms in producing economic concentrations of rare elements such as tantalum remains contentious. To decipher the paragenetic information encoded in zoned minerals crystallized during the magmatichydrothermal transition, we applied SEM-EDS and LA-ICP-MS chemical mapping to muscovite-and columbite-group minerals (CGM) from a rare-element pegmatite of the albite-spodumene subtype from Aclare, southeast Ireland. We present a three-stage model for the magmatic-hydrothermal transition based on petrography, imaging and quantification of rare-element (Li, B, Rb, Nb, Sn, Cs, Ba, Ta, W, U) zoning, integrated with geochemical modeling and constraints from published literature. Stage I marks the end of purely magmatic crystallization from a peraluminous granitic melt.