Patients with childhood acute myeloid leukemia (AML) with complex karyotypes (CKs) have a dismal outcome. However, for patients with a KMT2A rearrangement (KMT2A-r), the prognosis appears to depend on the fusion partner gene rather than the karyotype structure. Thus, a precise characterization of KMT2A-r and the fusion partner genes, especially in CKs, is of interest for managing AML. We describe the clinical and molecular features of a child who presented with a large abdominal mass, AML, and a new CK, involving chromosomes 11, 16, and 19 leading to a KMT2A-MLLT1 fusion and 2 extra copies of the ELL gene, thus resulting in the concurrent overexpression of MLLT1 and ELL. Molecular cytogenetic studies defined the karyotype as 47,XY,der(11)t(11;16)(q23.3;p11.2),der(16)t(16;19)(p11.2;p13.3),der(19)t(11;19)(q23.3;p13.3),+der(19)t(16;19)(16pter→p11.2::19p13.3→19q11::19p11→19p13.3::16p11.2→16pter). Array CGH revealed a gain of 30.5 Mb in the 16p13.3p11.2 region and a gain of 18.1 Mb in the 19p13.3p12 region. LDI-PCR demonstrated the KMT2A-MLLT1 fusion. Reverse sequence analysis showed that the MLLT1 gene was fused to the 16p11.2 region. RT-qPCR quantification revealed that ELL and MLLT1 were overexpressed (4- and 10-fold, respectively). In summary, this is a pediatric case of AML presenting a novel complex t(11;16;19) variant with overexpression of ELL and MLLT1.