Full- and reduced-order observers have been used in many engineering applications, particularly for energy systems. Applications of observers to energy systems are twofold: (1) the use of observed variables of dynamic systems for the purpose of feedback control and (2) the use of observers in their own right to observe (estimate) state variables of particular energy processes and systems. In addition to the classical Luenberger-type observers, we will review some papers on functional, fractional, and disturbance observers, as well as sliding-mode observers used for energy systems. Observers have been applied to energy systems in both continuous and discrete time domains and in both deterministic and stochastic problem formulations to observe (estimate) state variables over either finite or infinite time (steady-state) intervals. This overview paper will provide a detailed overview of observers used for linear and linearized mathematical models of energy systems and review the most important and most recent papers on the use of observers for nonlinear lumped (concentrated)-parameter systems. The emphasis will be on applications of observers to renewable energy systems, such as fuel cells, batteries, solar cells, and wind turbines. In addition, we will present recent research results on the use of observers for distributed-parameter systems and comment on their actual and potential applications in energy processes and systems. Due to the large number of papers that have been published on this topic, we will concentrate our attention mostly on papers published in high-quality journals in recent years, mostly in the past decade.