2015
DOI: 10.12693/aphyspola.128.b-78
|View full text |Cite
|
Sign up to set email alerts
|

The Modeling and Hardware Implementation of Semiconductor Circuit Elements by Using ANN and FPGA

Abstract: This study, the modeling and hardware implementation of semiconductor circuit elements very frequently used in electronic circuits are carried out by using artificial neural networks and field programmable gate array chip. Initially the artificial neural network models obtained has been written in very high speed integrated circuit hardware description language (VHDL). Then, these configurations have been simulated and tested under ModelSim Xilinx software. Finally, the best configuration has been implemented … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 14 publications
0
3
0
1
Order By: Relevance
“…Tuntas proposed ANN for modelling and implementing semiconductor circuit elements with very high-speed integrated circuit hardware description language (VHDL) [7]. It increases the efficiency of the circuit model.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Tuntas proposed ANN for modelling and implementing semiconductor circuit elements with very high-speed integrated circuit hardware description language (VHDL) [7]. It increases the efficiency of the circuit model.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Günümüzde oldukça popüler sayısal sinyal işleme platformlarından birisi olan FPGA (Alan(da)/Saha(da) Programlanabilir Kapı Dizileri-Field Programmable Gate Array) çiplerinin diğer sayısal platformlara göre düşük güç tüketimi, yüksek çalışma frekansları, tekrar tekrar programlanabilme, hızlı ilk prototipleme, paralel çalışma ve esneklik gibi önemli avantajları bulunmaktadır. Bu nedenle sinyal-görüntü işleme (Paukštaitis ve Dosinas, 2009), modelleme (Tuntas, 2015), kaos (Koyuncu ve ark., 2018), rasgele sayı üretimi (Alçın ve ark., 2019), algoritma hızlandırma (Sahin, 2010)…”
Section: Fpga çIpleriunclassified
“…ANNs have the ability to establish relationships between the inputs and outputs and produce results. ANN can be trained with current examples to model the problem and the results can be used in real time [11][12][13][14].…”
Section: Artificial Neural Networkmentioning
confidence: 99%