A B S T R A C TKinematical characteristics of reflected waves in anisotropic elastic media play an important role in the seismic imaging workflow. Considering compressional and converted waves, we derive new, azimuthally dependent, slowness-domain approximations for the kinematical characteristics of reflected waves (radial and transverse offsets, intercept time and traveltime) for layered orthorhombic media with varying azimuth of the vertical symmetry planes. The proposed method can be considered an extension of the well-known 'generalized moveout approximation' in the slowness domain, from azimuthally isotropic to azimuthally anisotropic models. For each slowness azimuth, the approximations hold for a wide angle range, combining power series coefficients in the vicinity of both the normal-incidence ray and an additional wide-angle ray. We consider two cases for the wide-angle ray: a 'critical slowness match' and a 'pre-critical slowness match' studied in Parts I and II of this work, respectively. For the critical slowness match, the approximations are valid within the entire slowness range, up to the critical slowness. For the 'pre-critical slowness match', the approximations are valid only within the bounded slowness range; however, the accuracy within the defined range is higher. The critical slowness match is particularly effective when the subsurface model includes a dominant high-velocity layer where, for nearly critical slowness values, the propagation in this layer is almost horizontal. Comparing the approximated kinematical characteristics with those computed by numerical ray tracing, we demonstrate high accuracy.