Targeted memory reactivation (TMR) during slow-wave oscillations (SWOs) in nonrapid eye movement (NREM) sleep has been demonstrated with sensory cues to achieve about 5-12% improvement in post-nap memory performance on simple laboratory tasks. But prior work has neither addressed the one-shot aspect of episodic memory acquisition, nor dealt with the presence of interference from ambient environmental cues in real-world settings for the sensory cues. Moreover, TMR with sensory cues may not be scalable to the multitude of experiences over one's lifetime. We designed a novel non-invasive paradigm that tags one-shot experiences of minute-long naturalistic episodes within immersive virtual reality (VR) with unique spatiotemporal amplitude-modulated patterns (STAMPs) of transcranial electrical stimulation (tES) and cues them during SWOs. In particular, we demonstrate that these STAMPs can be reapplied as brief pulses to temporally coincide with UP states of SWOs (0.4167 -1 s) on two consecutive nights to achieve about 20% improvement in the metamemory of targeted episodes at 48 hours after the one-shot viewing, compared to the control episodes. Post-sleep metamemory of the targeted episodes was driven by an interaction between their pre-sleep metamemory and the number of STAMP applications for those episodes during sleep. Overnight metamemory improvements were mediated by spectral power increases from 6.18 to 6.7 s following the offset of STAMPs in the slow-spindle band (9-12 Hz) for left temporal areas in the scalp electroencephalography (EEG) during sleep. These results prescribe an optimal strategy to leverage STAMPs for boosting metamemory and suggest that real-world episodic memories can be modulated in a targeted manner even with coarser, non-invasive spatiotemporal stimulation.