Background And Objective
Cerebral Contusion (CC) is one of the most serious injury types in patients with traumatic brain injury (TBI). In this study, the baseline data, imaging features and laboratory examinations of patients with CC were summarized and analyzed to develop and validate a prediction model of nomogram to evaluate the clinical outcomes of patients.
Methods
A total of 426 patients with cerebral contusion (CC) admitted to the People’s Hospital of Qinghai Province and Affiliated Hospital of Qingdao University from January 2018 to January 2021 were included in this study, We randomly divided the cohort into a training cohort (n = 284) and a validation cohort (n = 142) with a ratio of 2:1.At Least absolute shrinkage and selection operator (Lasso) regression were used for screening high-risk factors affecting patient prognosis and development of the predictive model. The identification ability and clinical application value of the prediction model were analyzed through the analysis of receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA).
Results
Twelve independent prognostic factors, including age, Glasgow Coma Score (GCS), Basal cistern status, Midline shift (MLS), Third ventricle status, intracranial pressure (ICP) and CT grade of cerebral edema,etc., were selected by Lasso regression analysis and included in the nomogram. The model showed good predictive performance, with a C index of (0.87, 95% CI, 0.026–0.952) in the training cohort and (0.93, 95% CI, 0.032–0.965) in the validation cohort. Clinical decision curve analysis (DCA) also showed that the model brought high clinical benefits to patients.
Conclusion
This study established a high accuracy of nomogram model to predict the prognosis of patients with CC, its low cost, easy to promote, is especially applicable in the acute environment, at the same time, CSF-glucose/lactate ratio(C-G/L), volume of contusion, and mean CT values of edema zone, which were included for the first time in this study, were independent predictors of poor prognosis in patients with CC. However, this model still has some limitations and deficiencies, which require large sample and multi-center prospective studies to verify and improve our results.