In the current study, the surface of superparamagnetic iron oxide (SPION) was coated with dextran (DEX), and conjugated with folic acid (FA), to enhance the targeted delivery and uptake of vinblastine (VBL) in PANC-1 pancreatic cancer cells. Numerous analyses were performed to validate the prepared FA-DEX-VBL-SPION, such as field emission scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering (DLS), Zeta Potential, Fourier transform infrared spectroscopy, and vibrating sample magnetometry (VSM). The delivery system capacity was evaluated by loading and release experiments. Moreover, in vitro biological studies, including a cytotoxicity study, cellular uptake assessment, apoptosis analysis, and real-time PCR, were carried out. The results revealed that the obtained nanocarrier was spherical with a suitable dispersion and without visible aggregation. Its average size, polydispersity, and zeta were 74 ± 13 nm, 0.080, and −45 mV, respectively. This dual functional nanocarrier also exhibited low cytotoxicity and a high apoptosis induction potential for successful VBL co-delivery. Real-time quantitative PCR analysis demonstrated the activation of caspase-3, NF-1, PDL-1, and H-ras inhibition, in PANC-1 cells treated with the FA-VBL-DEX-SPION nanostructure. Close inspection of the obtained data proved that the FA-VBL-DEX-SPION nanostructure possesses a noteworthy chemo-preventive effect on pancreatic cancer cells through the inhibition of cell proliferation and induction of apoptosis.