Recently, power quality (PQ) issues have drawn considerable attention of the researchers due to the increasing awareness of the customers towards power quality. The PQ issues maintain its preeminence because of the significant growth encountered in the smart grid technology, distributed generation, usage of sensitive and power electronic equipments with the integration of renewable energy resources. The IoT and 5G networks technologies have a number of advantages like smart sensor interfacing, remote sensing and monitoring, data transmission at high speed. Due to this, applications of these two are highly adopted in smart grid. The prime focus of the paper is to present an exhaustive survey of detection and classification of power quality disturbances by discussing signal processing techniques and artificial intelligence tools with their respective pros and cons. Further, critical analysis of automatic recognition techniques for the concerned field is posited with the viewpoint of the types of power input signal (synthetic/real/noisy), pre-processing tools, feature selection methods, artificial intelligence techniques and modes of operation (online/offline) as per the reported articles. The present work also elaborates the future scope of the said field for the reader. This paper provides valuable guidelines to the researchers those having interest in the field of PQ analysis and exploring the better methodologies for further improvement. Comprehensive comparisons have been presented with the help of tabular presentations. Although this critical survey cannot be collectively exhaustive, still this survey comprises the most significant works in the concerned paradigm by examining more than 300 research publications.