Background
Basal cell adhesion molecule (BCAM) is a laminin α5 (LAMA5) binding membrane‐bound protein with a putative role in cancer. Besides full‐length BCAM1, an isoform lacking most of the cytoplasmic domain (BCAM2), and a soluble form (sBCAM) of unknown function are known. In ovarian carcinoma (OC), all BCAM forms are abundant and associated with poor survival, yet BCAM's contribution to peritoneal metastatic spread remains enigmatic.
Methods
Biochemical, omics‐based and real‐time cell assays were employed to identify the source of sBCAM and metastasis‐related functions of different BCAM forms. OC cells, explanted omentum and a mouse model of peritoneal colonisation were used in loss‐ and gain‐of‐function experiments.
Results
We identified ADAM10 as a major BCAM sheddase produced by OC cells and identified proteolytic cleavage sites proximal to the transmembrane domain. Recombinant soluble BCAM inhibited single‐cell adhesion and migration identically to membrane‐bound isoforms, confirming its biological activity in OC. Intriguingly, this seemingly anti‐tumorigenic potential of BCAM contrasts with a novel pro‐metastatic function discovered in the present study. Thus, all queried BCAM forms decreased the compactness of tumour cell spheroids by inhibiting LAMA5 – integrin β1 interactions, promoted spheroid dispersion in a three‐dimensional collagen matrix, induced clearance of mesothelial cells at spheroid attachment sites in vitro and enhanced invasion of spheroids into omental tissue both ex vivo and in vivo.
Conclusions
Membrane‐bound BCAM as well as sBCAM shed by ADAM10 act as decoys rather than signalling receptors to modulate metastasis‐related functions. While BCAM appears to have tumour‐suppressive effects on single cells, it promotes the dispersion of OC cell spheroids by regulating LAMA5‐integrin‐β1‐dependent compaction and thereby facilitating invasion of metastatic target sites. As peritoneal dissemination is majorly mediated by spheroids, these findings offer an explanation for the association of BCAM with a poor clinical outcome of OC, suggesting novel therapeutic options.