2016
DOI: 10.1016/j.cor.2015.09.003
|View full text |Cite
|
Sign up to set email alerts
|

The multimode covering location problem

Abstract: In this paper we introduce the Multimode Covering Location Problem. This is a generalization of the Maximal Covering Location Problem that consists in locating a given number of facilities of different types with a limitation on the number of facilities sharing the same site.The problem is challenging and intrinsically much harder than its basic version. Nevertheless, it admits a constant factor approximation guarantee, which can be achieved combining two greedy algorithms. To improve the greedy solutions, we … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
9
1

Relationship

1
9

Authors

Journals

citations
Cited by 24 publications
(7 citation statements)
references
References 24 publications
0
5
0
2
Order By: Relevance
“…De acordo com Colombo et al (2016), um problema de localização de instalações consiste basicamente em definir a localização geográfica de uma série de instalações de forma a atender a um conjunto de centros de demanda cujas posições são conhecidas, e buscando otimizar uma determinada função objetivo.…”
Section: Problema De Localizaçãounclassified
“…De acordo com Colombo et al (2016), um problema de localização de instalações consiste basicamente em definir a localização geográfica de uma série de instalações de forma a atender a um conjunto de centros de demanda cujas posições são conhecidas, e buscando otimizar uma determinada função objetivo.…”
Section: Problema De Localizaçãounclassified
“…Different from the flow-based model, the spatial-based model was studied in [24][25][26][27][28][29][30] for optimizing the locations of EVCSs. Hakimi [24] developed the p-median model (PMM) to minimize the overall distance between demand and service facilities.…”
Section: Introductionmentioning
confidence: 99%
“…The validity of these models is verified using various datasets. Colombo et al (2016) present a multimode generalisation of the MCLP, which is achieved by combining two greedy algorithms. Paul et al (2017) formulate a multi-objective hierarchical extension of the MCLP that seeks to maximise the coverage of the population within a rapid response window while minimising modifications to the existing structure.…”
Section: Introductionmentioning
confidence: 99%