The mergers of supermassive black hole binaries (SMBHB) promise to be incredible sources of gravitational waves (GW). While the oscillatory part of the merger gravitational waveform will be outside the frequency sensitivity range of pulsar timing arrays (PTA), the non-oscillatory GW memory effect is detectable. Further, any burst of gravitational waves will produce GW memory, making memory a useful probe of unmodeled exotic sources and new physics. We searched the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11-year data set for GW memory. This dataset is sensitive to very low frequency GWs of