Atmospheric oxygen is an indispensable element required in order for mammalian cells to function normally. The mammalian respiratory system, through pulmonary ventilation and gas diffusion, provides the physical mechanisms by which oxygen gains access to all body cells and through which carbon dioxide is eliminated from the body. The network of tissues and organs of the respiratory system helps the mammalian body cells to absorb oxygen from the air to enable the tissues and organs to function optimally. The advent of the coronavirus disease 2019 (Covid-19) Pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has stimulated heightened and refocused interest in the study of various aspects of the respiratory system. The SARS-CoV-2 targets the respiratory system mucosal cells and in a cascade of biological processes curtails the ability of the respiratory system to absorb and deliver oxygen to the pulmonary blood and body cells often resulting in severe disease and/or death. The mucosa and submucosa of the respiratory tract are adapted to provide both innate and adaptive immune defense mechanisms against pathogens including the SARS-CoV-2. The entire respiratory tract is covered by a mucosa that transitions in its structural and functional characteristics from the upper respiratory tract to the lower respiratory tract. This chapter provides an overview of the functional anatomy and immunology of the respiratory tract covering the mucosa from the upper respiratory tract all the way up to the alveolar epithelium. In the advent of the covid-19 pandemic, a broader perspective and understanding of the anatomy and immunology of the respiratory tract will enable general readers and researchers to fully appreciate the discourse in covid-19 research as it affects the respiratory tract.