Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Honokiol, a biphenyl lignan extracted from bark extracts belonging to Magnolia plant species, is a pleiotropic compound which exhibits a widespread range of antioxidant, antibacterial, antidiabetic, anti-inflammatory, antiaggregant, analgesic, antitumor, antiviral and neuroprotective activities. Honokiol, being highly hydrophobic, is soluble in common organic solvents but insoluble in water. Therefore, its biological effects could depend on its bioactive mechanism. Although honokiol has many impressive bioactive properties, its effects are unknown at the level of the biological membrane. Understanding honokiol’s bioactive mechanism could unlock innovative perspectives for its therapeutic development or for therapeutic development of molecules similar to it. I have studied the behaviour of the honokiol molecule in the presence of a plasma-like membrane and established the detailed relation of honokiol with membrane components using all-atom molecular dynamics. The results obtained in this work sustain that honokiol has a tendency to insert inside the membrane; locates near and below the cholesterol oxygen atom, amid the hydrocarbon membrane palisade; increases slightly hydrocarbon fluidity; does not interact specifically with any membrane lipid; and, significantly, forms aggregates. Significantly, aggregation does not impede honokiol from going inside the membrane. Some of the biological characteristics of honokiol could be accredited to its aptitude to alter membrane biophysical properties, but the establishment of aggregate forms in solution might hamper its clinical use.
Honokiol, a biphenyl lignan extracted from bark extracts belonging to Magnolia plant species, is a pleiotropic compound which exhibits a widespread range of antioxidant, antibacterial, antidiabetic, anti-inflammatory, antiaggregant, analgesic, antitumor, antiviral and neuroprotective activities. Honokiol, being highly hydrophobic, is soluble in common organic solvents but insoluble in water. Therefore, its biological effects could depend on its bioactive mechanism. Although honokiol has many impressive bioactive properties, its effects are unknown at the level of the biological membrane. Understanding honokiol’s bioactive mechanism could unlock innovative perspectives for its therapeutic development or for therapeutic development of molecules similar to it. I have studied the behaviour of the honokiol molecule in the presence of a plasma-like membrane and established the detailed relation of honokiol with membrane components using all-atom molecular dynamics. The results obtained in this work sustain that honokiol has a tendency to insert inside the membrane; locates near and below the cholesterol oxygen atom, amid the hydrocarbon membrane palisade; increases slightly hydrocarbon fluidity; does not interact specifically with any membrane lipid; and, significantly, forms aggregates. Significantly, aggregation does not impede honokiol from going inside the membrane. Some of the biological characteristics of honokiol could be accredited to its aptitude to alter membrane biophysical properties, but the establishment of aggregate forms in solution might hamper its clinical use.
Thiazolidinediones (TZDs) including rosiglitazone and pioglitazone function as peroxisome proliferator-activated receptor gamma (PPARγ) full agonists, which have been known as a class to be among the most effective drugs for the treatment of type 2 diabetes mellitus (T2DM). However, side effects of TZDs such as fluid retention and weight gain are associated with their full agonistic activities toward PPARγ induced by the AF-2 helix-involved “locked” mechanism. Thereby, this study aimed to obtain novel PPARγ partial agonists without direct interaction with the AF-2 helix. Through performing virtual screening of the Targetmol L6000 Natural Product Library and utilizing molecular dynamics (MD) simulation, as well as molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) analysis, four compounds including tubuloside b, podophyllotoxone, endomorphin 1 and paliperidone were identified as potential PPARγ partial agonists. An in vitro TR-FRET competitive binding assay showed podophyllotoxone displayed the optimal binding affinity toward PPARγ among the screened compounds, exhibiting IC50 and ki values of 27.43 µM and 9.86 µM, respectively. Further cell-based transcription assays were conducted and demonstrated podophyllotoxone’s weak agonistic activity against PPARγ compared to that of the PPARγ full agonist rosiglitazone. These results collectively demonstrated that podophyllotoxone could serve as a PPARγ partial agonist and might provide a novel candidate for the treatment of various diseases such as T2DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.