Polymatroids are combinatorial abstractions of subspace arrangements in the same way that matroids are combinatorial abstractions of hyperplane arrangements. By introducing augmented Chow rings of polymatroids, modeled after augmented wonderful varieties of subspace arrangements, we generalize several algebro-geometric techniques developed in recent years to study matroids. We show that intersection numbers in the augmented Chow ring of a polymatroid are determined by a matching property known as the Hall–Rado condition, which is new even in the case of matroids.