We study methods to simulate term structures in order to measure interest rate risk more accurately. We use principal component analysis of term structure innovations to identify risk factors and we model their univariate distribution using GARCH-models with Student's t-distributions in order to handle heteroscedasticity and fat tails. We find that the Student's t-copula is most suitable to model codependence of these univariate risk factors. We aim to develop a model that provides low ex-ante risk measures, while having accurate representations of the ex-post realized risk. By utilizing a more accurate term structure estimation method, our proposed model is less sensitive to measurement noise compared to traditional models. We perform an out-of-sample test for the U.S. market between 2002 and 2017 by valuing a portfolio consisting of interest rate derivatives. We find that ex-ante Value at Risk measurements can be substantially reduced for all confidence levels above 95%, compared to the traditional models. We find that that the realized portfolio tail losses accurately conform to the ex-ante measurement for daily returns, while traditional methods overestimate, or in some cases even underestimate the risk ex-post. Due to noise inherent in the term structure measurements, we find that all models overestimate the risk for 10-day and quarterly returns, but that our proposed model provides the by far lowest Value at Risk measures.