Abstract
In this paper, we consider the system
\left\{\begin{aligned} &\displaystyle{-}M_{1}\bigg{(}\int_{\Omega}\frac{\lvert%
\nabla u\rvert^{p(x)}+\lvert u\rvert^{p(x)}}{p(x)}\,dx\biggr{)}(\Delta_{p(x)}u%
-\lvert u\rvert^{p(x)-2}u)=\lambda a(x)\lvert u\rvert^{r_{1}(x)-2}u-\mu b(x)%
\lvert u\rvert^{\alpha(x)-2}u&&\displaystyle\text{in }\Omega,\\
&\displaystyle{-}M_{2}\bigg{(}\int_{\Omega}\frac{\lvert\nabla v\rvert^{q(x)}+%
\lvert v\rvert^{q(x)}}{q(x)}\,dx\biggr{)}(\Delta_{q(x)}v-\lvert v\rvert^{q(x)-%
2}v)=\lambda c(x)\lvert v\rvert^{r_{2}(x)-2}v-\mu d(x)\lvert v\rvert^{\beta(x)%
-2}v&&\displaystyle\text{in }\Omega,\\
&\displaystyle u=v=0&&\displaystyle\text{on }\partial\Omega,\end{aligned}\right.
where Ω is a bounded domain in
{\mathbb{R}^{N}}
(
{N\geq 2}
) with a smooth boundary
{\partial\Omega}
,
{M_{1}(t),M_{2}(t)}
are continuous functions and
{\lambda,\mu>0}
.
We prove that for any
{\mu>0}
there exists
{\lambda_{*}}
sufficiently small such that
for any
{\lambda\in(0,\lambda_{*})}
the above system has a nontrivial weak solution.
The proof relies on some variational arguments
based on Ekeland’s variational principle, and some adequate variational methods.