Abstract:In this paper, we are concerned with the Neumann problem for a class of quasilinear stationary Kirchhoff-type potential systems, which involves general variable exponents elliptic operators with critical growth and real positive parameter. We show that the problem has at least one solution, which converges to zero in the norm of the space as the real positive parameter tends to infinity, via combining the truncation technique, variational method, and the concentration–compactness principle for variable exponen… Show more
In this paper, our focus lies in addressing the Dirichlet problem associated with a specific class of critical anisotropic elliptic equations of Schrödinger-Kirchhoff type. These equations incorporate variable exponents and a real positive parameter. Our objective is to establish the existence of at least one solution to this problem.
In this paper, our focus lies in addressing the Dirichlet problem associated with a specific class of critical anisotropic elliptic equations of Schrödinger-Kirchhoff type. These equations incorporate variable exponents and a real positive parameter. Our objective is to establish the existence of at least one solution to this problem.
In this article, we obtain the existence and infinitely many nontrivial solutions for a class of nonlinear critical anisotropic elliptic equations involving variable exponents and two real parameters, via combining the variational method, and the concentration‐compactness principle for anisotropic variable exponent under suitable assumptions on the nonlinearities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.