Sufficient activation of the left fusiform gyrus is important in reading ability acquisition due to its role in reading and naming, working memory (WM), and balance tasks. Recently, a newly‐designed training program, Verbal Working Memory‐Balance (VWM‐B), has been evaluated on children with dyslexia, and its positive effects were shown on reading ability, WM capacity, and postural control. In the present study, we aimed to estimate the functional connectivity alterations of the left fusiform gyrus following training by the VWM‐B. Before and after 15 sessions of training, the fMRI and other tools data were collected on a sample of children with dyslexia, who were allocated into two control and experiment groups. Data analyses showed the increased functional connectivity of the left fusiform gyrus between the left anterior temporal fusiform cortex, left and right Crus II regions of the cerebellum, and the left middle frontal gyrus. Moreover, VWM‐B training significantly improved the reading and naming ability, WM capacity, and postural control of participants in the experiment group in comparison to the control. The current study findings emphasize the critical role of the left fusiform gyrus in reading ability. Moreover, it provides evidence to support the existence of cerebellar deficits in dyslexia.