An increase in the sympathetic tone in the rat ovary induces a polycystic ovary (PCOS-like) phenotype. No information exists about its impact on fertility. In contrast, increased follicular development and improved fertility in rats were found after pharmacological inhibition of acetylcholinesterase, which increased intraovarian acetylcholine (ACh). Now, we studied the impact of sympathetic stress, followed by a recovery period without stress, on the cholinergic and noradrenergic systems of the rat ovary and on fertility. To activate ovarian sympathetic nerves, female Sprague–Dawley rats were exposed to cold stress (4°C/3 h day for 28 days; first period), followed by a 28-day period without cold stress (second period). No changes in estrous cyclicity during the first period was found. At the end of this period, ovarian levels of NA and ACh were increased. Morphometric analysis showed lower numbers of secondary and antral follicles, enhanced follicular atresia and fewer corpora lutea. Plasma progesterone was lower and testosterone was higher than that in controls. At end of the second period, ovarian ACh levels had returned to control levels, but NA levels remained elevated. The second period was also characterized by the presence of cystic follicles in the ovary, by elevated plasma testosterone and estradiol levels, while progesterone levels were decreased. Estrous cyclicity and ovulation during that period were irregular and fertility decreased. Thus, cold stress initially activated both ovarian noradrenergic and cholinergic system. After stress, the ovary did not fully recover and activation of the noradrenergic system persisted and correlated with cystic ovarian morphology and decreased fertility.