Autobiographical memory (AM) refers to memory for events from our own personal past. Functional neuroimaging studies of AM are important because they can investigate the neural correlates of processes that are difficult to study using laboratory stimuli, including: complex constructive processes, subjective qualities of memory retrieval, and remote memory. Three functional magnetic resonance imaging (fMRI) studies are presented to examine these important contributions of AM. The first study investigates the neural correlates of temporal-order memory for autobiographical events using a novel photo paradigm. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. It was found that temporal-order decisions associated with recollection recruited left prefrontal (PFC) and left posterior parahippocampal cortex, whereas temporal-order decisions relying on familiarity recruited greater activity in the right PFC.The second study examines self-projection, the capacity to re-experience the personal past and to mentally infer another person's perspective. A novel camera technology was used to examine self-projection by prospectively generating dynamic visuospatial images taken from a first-person perspective. Participants were literally asked to self-project into the personal past or into the life of another person. Selfv projection of one's own past self recruited greater ventral medial PFC (mPFC), and selfprojection of another individual recruited dorsal mPFC. Activity in ventral vs. dorsal mPFC was also sensitive to the ability to relive or understand the perspective taken on each trial. Further, task-related functional connectivity analysis revealed that ventral mPFC contributed to the medial temporal lobe network linked to memory processes, whereas dorsal mPFC contributed to the frontoparietal network linked to controlled processes.The third study focuses on the neural correlates underlying age-related differences in the recall of episodically rich AMs. Age-related attenuation in the episodic richness of AM was linked to reductions in activity elicited during elaboration.Age effects on AM were more pronounced during elaboration than search, with older adults showing less sustained recruitment of the hippocampus and ventrolateral PFC for less episodically rich AMs. Further, there was an age-related reduction in the top-down modulation of the PFC on the hippocampus by episodic richness, possibly reflecting fewer controlled processes operating on the recovery of information in the hippocampus.Ultimately, the goal of all memory research is to understand how memory operates in the real-world; the present research highlights the important contribution of functional neuroimaging studies of AM in attaining this goal.vi