A technique was developed to evaluate and compensate for the drift of eight mass-sensitive sensors in an open detection cell in order to estimate the influence of external factors (temperature, changes in the chemical composition of the background) on the out-of-laboratory analysis of biosamples. The daily internal standardization of the system is an effective way to compensate for the sensor signal drift when the sorption properties of sensitive coatings change during their long-term, intensive operation. In this study, distilled water was proposed as a standard for water matrix-based biosamples (blood, exhaled breath condensate, urine, etc.). Further, internal standardization was based on daily calculation of the specific sensor signals by dividing the sensor signals for the biosample according to the corresponding averaged values obtained from three to five standard measurements. The stability of the sensor array operation was estimated using the theory of statistical process control (exponentially weighted moving average control charts) based on the specific signal of the sensor array. The control limits for the statistical quantity of the central tendency for each sensor and the whole array, as well as the variations of the sensor signals, were determined. The average times required for signal and run lengths, for the purpose of statistically substantiated monitoring of the electronic nose’s stability, were calculated. Based on an analysis of the tendency and variations in sensor signals during 3 months of operation, a technique was formulated to control the stability of the sensor array for the out-of-laboratory analysis of the biosamples. This approach was successfully verified by classifying the results of the analysis of the blood and water samples obtained for this period. The proposed technique can be introduced into the software algorithm of the electronic nose, which will improve decision-making during the long-term monitoring of health conditions in humans and animals.