Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
IntroductionHearing loss is a frequent sensory impairment type in humans, with about 50% of prelingual cases being attributed to genetic factors. Autosomal recessive hearing loss (ARHL) exhibits great locus heterogeneity and is responsible for 70%–80% of hereditary nonsyndromic cases.MethodsA total of 90 unrelated Brazilian individuals were selected for having hearing loss of presumably autosomal recessive inheritance, either born from consanguineous marriages or belonging to families with two or more affected individuals in the sibship and most cases were of normal hearing parents. In all cases, common pathogenic variants in GJB2 (c.35delG), GJB6 [del(GJB6-D13S1830) and del(GJB6-D13S1854)] and MT-RNR1 (m.1555A>G) were discarded and most were previously assessed by complete Sanger sequencing of GJB2. Their genetic material was analyzed through next-generation sequencing, targeting 99 hearing loss-related genes and/or whole exome sequencing.ResultsIn 32 of the 90 probands (36,7%) causative variants were identified, with autosomal recessive inheritance confirmed in all, except for two cases due to dominant variants (SIX1 and P2RX2). Thirty-nine different causative variants were found in 24 different known hearing loss-associated genes, among which 10 variants are novel, indicating wide genetic heterogeneity in the sample, after exclusion of common pathogenic variants. Despite the genetic heterogeneity, some genes showed greater contribution: GJB2, CDH23, MYO15A, OTOF, and USH2A.ConclusionThe present results confirmed that next-generation sequencing is an effective tool for identifying causative variants in autosomal recessive hearing loss. To our knowledge, this is the first report of next-generation sequencing being applied to a large cohort of pedigrees with presumable autosomal recessive hearing loss in Brazil and South America.
IntroductionHearing loss is a frequent sensory impairment type in humans, with about 50% of prelingual cases being attributed to genetic factors. Autosomal recessive hearing loss (ARHL) exhibits great locus heterogeneity and is responsible for 70%–80% of hereditary nonsyndromic cases.MethodsA total of 90 unrelated Brazilian individuals were selected for having hearing loss of presumably autosomal recessive inheritance, either born from consanguineous marriages or belonging to families with two or more affected individuals in the sibship and most cases were of normal hearing parents. In all cases, common pathogenic variants in GJB2 (c.35delG), GJB6 [del(GJB6-D13S1830) and del(GJB6-D13S1854)] and MT-RNR1 (m.1555A>G) were discarded and most were previously assessed by complete Sanger sequencing of GJB2. Their genetic material was analyzed through next-generation sequencing, targeting 99 hearing loss-related genes and/or whole exome sequencing.ResultsIn 32 of the 90 probands (36,7%) causative variants were identified, with autosomal recessive inheritance confirmed in all, except for two cases due to dominant variants (SIX1 and P2RX2). Thirty-nine different causative variants were found in 24 different known hearing loss-associated genes, among which 10 variants are novel, indicating wide genetic heterogeneity in the sample, after exclusion of common pathogenic variants. Despite the genetic heterogeneity, some genes showed greater contribution: GJB2, CDH23, MYO15A, OTOF, and USH2A.ConclusionThe present results confirmed that next-generation sequencing is an effective tool for identifying causative variants in autosomal recessive hearing loss. To our knowledge, this is the first report of next-generation sequencing being applied to a large cohort of pedigrees with presumable autosomal recessive hearing loss in Brazil and South America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.