The reversible addition–fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) was investigated under microwave irradiation. At first, a comparison was made between microwave and thermal heating for the RAFT polymerization of MMA with azobis(isobutyronitrile) (AIBN) as initiator and 2-cyano-2-butyldithiobenzoate (CBDB) as RAFT agent, revealing comparable polymerization kinetics indicating the absence of non-thermal microwave effects. Second, the CBDB-mediated RAFT polymerization of MMA was investigated at high temperatures (120°C, 150°C, and 180°C, respectively) in the absence of a radical initiator, showing a linear increase of the molar masses with conversion. The polydispersity indices remained below 1.5 up to 25% MMA conversion at 120°C and 150°C, indicating a controlled polymerization. This control over the polymerization was confirmed by the ability to control the molar masses by the concentration of RAFT agent.