Abstract:We present details of logically simplest integral sufficient for deducing the Stirling asymptotic formula for n!. It is the Newton integral, defined as the difference of values of any primitive at the endpoints of the integration interval. We review in its framework in detail two derivations of the Stirling formula. The first approximates n i=1 log i with an integral and the second uses the classical gamma function and a Fubini-type result. We mention two more integral representations of n!.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.