Detailed information about temperature distribution can be important to understand structural behavior in fire. This study develops a method to image three-dimensional temperature distributions in steel–concrete composite slabs using distributed fiber optic sensors. The feasibility of the method is explored using six 1.2 m × 0.9 m steel–concrete composite slabs instrumented with distributed sensors and thermocouples subjected to fire for over 3 h. Dense point clouds of temperature in the slabs were measured using the distributed sensors. The results show that the distributed sensors operated at material temperatures up to 960 °C with acceptable accuracy for many structural fire applications. The measured non-uniform temperature distributions indicate a spatially distributed thermal response in steel–concrete composite slabs, which can only be adequately captured using approaches that provide a high density of through-depth data points.