Solid-state 2H NMR spectroscopy is a well-established and versatile method to study molecular orientation and dynamics in selectively deuterated samples. Herein, we introduce a 2D 2H double-quantum (DQ) NMR experiment performed under fast magic-angle spinning with a slight offset of the magic angle (OMAS). The experiment combines 2H chemical-shift resolution with DQ-filtered quasistatic 2H line shapes. In this way, it is possible to separate 2H resonances and to independently determine 2H quadrupole couplings at multiple sites. While 2H chemical shifts are resolved in the 2H DQ dimension, the quadrupole parameters can be obtained from characteristic line shapes which are reintroduced in the second dimension by the magic-angle offset. The 2D 2H DQ OMAS experiment is demonstrated on L-histidine which was deuterated at multiple sites by recrystallisation from D2O.