The procedures for bone and bone marrow section preparation, immunostaining conditions and antibodies are described in Supplementary Methods. The procedure for BrdU pulse labeling, LTR and subsequent detection has been reported 16 . The mice were fed BrdU (0.8 mg ml 21 in water) for 10 days, during which time 40% of LT-HSCs would divide at least once 31 . Seventy days after BrdU labelling, sections were stained with anti-BrdU antibody.
N-cadherin 1 cell countFor quantitative analysis of N-cadherin þ cells, the sections were developed with AEC after being incubated with rabbit anti-N-cadherin antibody for 1 h and horseradish peroxidase (HRP)-conjugated goat anti-rabbit second antibody for 1 h. Three people counted the SNO cells in these sections, blind to the source of the sections.
X-ray imageHigh-resolution X-rays (Faxitron MX-20) of bone and bone histomorphometry (OsteoMetrics, Inc.) were performed at the University of Missouri-Kansas City School of Dentistry. 1965-1972 (1996). 193-197 (2000). 10. Simmons, P., Gronthos, S. & Zannettino, A. C. Stem cell fate is influenced by specialized microenvironments that remain poorly defined in mammals 1-3 . To explore the possibility that haematopoietic stem cells derive regulatory information from bone, accounting for the localization of haematopoiesis in bone marrow, we assessed mice that were genetically altered to produce osteoblast-specific, activated PTH/PTHrP receptors (PPRs) 4 . Here we show that PPRstimulated osteoblastic cells that are increased in number produce high levels of the Notch ligand jagged 1 and support an increase in the number of haematopoietic stem cells with evidence of Notch1 activation in vivo. Furthermore, liganddependent activation of PPR with parathyroid hormone (PTH) increased the number of osteoblasts in stromal cultures, and augmented ex vivo primitive haematopoietic cell growth that was abrogated by g-secretase inhibition of Notch activation. An increase in the number of stem cells was observed in wild-type animals after PTH injection, and survival after bone marrow transplantation was markedly improved. Therefore, osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation. Niche constituent cells or signalling pathways provide pharmacological targets with therapeutic potential for stem-cell-based therapies.Mammalian bone marrow architecture involves haematopoietic stem cells (HSCs) in close proximity to the endosteal surfaces 5,6 , with more differentiated cells arranged in a loosely graduated fashion as the central longitudinal axis of the bone is approached 5,7,8 . This nonrandom organization of the marrow suggests a possible relationship between HSCs and osteoblasts-osteogenic cells lining the endosteal surface. Osteoblasts produce haematopoietic growth factors [9][10][11] and are activated by parathyroid hormone (PTH) or the locally produced PTH-related protein (PTHrP), through the PTH/ PTHrP receptor (PPR). We tested whether osteoblast...