Elongator has been reported to be a histone acetyltransferase complex involved in elongation of RNA polymerase II transcription. In Saccharomyces cerevisiae, mutations in any of the six Elongator protein subunit (ELP1-ELP6) genes or the three killer toxin insensitivity (KTI11-KTI13) genes cause similar pleiotropic phenotypes. By analyzing modified nucleosides in individual tRNA species, we show that the ELP1-ELP6 and KTI11-KTI13 genes are all required for an early step in synthesis of 5-methoxycarbonylmethyl (mcm 5 ) and 5-carbamoylmethyl (ncm 5 ) groups present on uridines at the wobble position in tRNA. Transfer RNA immunoprecipitation experiments showed that the Elp1 and Elp3 proteins specifically coprecipitate a tRNA susceptible to formation of an mcm 5 side chain, indicating a direct role of Elongator in tRNA modification. The presence of mcm 5 U, ncm 5 U, or derivatives thereof at the wobble position is required for accurate and efficient translation, suggesting that the phenotypes of elp1-elp6 and kti11-kti13 mutants could be caused by a translational defect. Accordingly, a deletion of any ELP1-ELP6 or KTI11-KTI13 gene prevents an ochre suppressor tRNA that normally contains mcm 5 U from reading ochre stop codons.