A B S T R A C TThis paper focuses on an examination of an applicability of Recurrent Neural Network models for detecting anomalous behavior of the CERN superconducting magnets. In order to conduct the experiments, the authors designed and implemented an adaptive signal quantization algorithm and a custom Gated Recurrent Unit-based detector and developed a method for the detector parameters selection.Three different datasets were used for testing the detector. Two artificially generated datasets were used to assess the raw performance of the system whereas the dataset intended for real-life experiments and model training was composed of the signals acquired from a new type of magnet, to be used during High-Luminosity Large Hadron Collider project. Several different setups of the developed anomaly detection system were evaluated and compared with state-of-the-art One Class Support Vector Machine (OC-SVM) reference model operating on the same data. The OC-SVM model was equipped with a rich set of feature extractors accounting for a range of the input signal properties.It was determined in the course of the experiments that the detector, along with its supporting design methodology, reaches F1 equal or very close to 1 for almost all test sets. Due to the profile of the data, the setup with the lowest maximum false anomaly length of the detector turned out to perform the best among all five tested configuration schemes of the detection system. The quantization parameters have the biggest impact on the overall performance of the detector with the best values of input/output grid equal to 16 and 8, respectively. The proposed solution of the detection significantly outperformed OC-SVM-based detector in most of the cases, with much more stable performance across all the datasets.