Despite their distinct embryonic origins, the skull and brain are highly integrated. Understanding the covariation between the skull and brain can shed light on anatomical, cognitive, and behavioral traits in extant and extinct species. Domestic dogs offer a unique opportunity to investigate skull–brain covariation due to their diverse skull morphologies and neural anatomy. To assess this question, we examined T2‐weighted MRI studies of 62 dogs from 33 breeds, plus an additional 17 dogs of mixed or unknown breeds. Scans were opportunistically collected from a veterinary teaching hospital of dogs that were referred for neurological examination but did not have grossly observable structural brain abnormalities. As the neurocrania of dogs become broader and shorter, there is a significant decrease in the gray matter volume of the right olfactory bulb, frontal cortex, marginal gyrus, and cerebellum. On the other hand, as the neurocrania of dogs become narrower and longer, there is a significant decrease in the gray matter volume of the olfactory bulb, frontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, periaqueductal gray, cerebellum, and brainstem. Selective breeding for specific skull shapes may impact canine brain anatomy and function.