Malignant proliferation and abundant angiogenesis are major causes of lung adenocarcinoma (LUAD) with high morbidity and mortality. Therefore, the exploration of the key regulatory mechanisms of malignant proliferation and angiogenesis in LUAD provides an opportunity for the development of targeted precision therapy. In this study, we found that the high expression of ATPase family AAA domain‐containing protein 3A (ATAD3A) in LUAD was positively associated with the poor survival of patients, while its high expression was positively associated with the angiogenesis of LUAD. Further knockdown of ATAD3A in LUAD significantly inhibited cell proliferation and suppressed expression of vascular endothelial growth factor A, FGF‐2, ANG‐1, and TGF‐β. The opposite effect was observed with ATAD3A overexpression. Furthermore, ATAD3A knockdown significantly inhibited tumor growth and angiogenesis in an in vivo subcutaneous xenograft tumor model. Mechanistic studies suggest that ATAD3A may promote signal transducer and activator of transcription 3 activation, a key signal regulating lung cancer cell proliferation and transcriptional secretion of proangiogenic factors. Therefore, targeted inhibition of ATAD3A may be an effective strategy for LUAD therapy, and ATAD3A may be a potential biomarker for predicting malignant progression.