Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study assesses chronological age of immature individuals from the degree of ossification evident in the foot skeleton. We considered all tarsal and ray bones in various combinations to determine the most sensitive indicators of chronological age. Skeletal maturity was rated according to a subjective but simple scoring system applied to radiographs of normal feet of children of known chronological age. Scales for assessing the primary center of ossification, secondary center of ossification, and state of fusion are defined. In general, as expected, females show earlier onset of skeletal maturity than males; in particular, females in our sample are skeletally mature in most elements beginning 48 months prior to the earliest incidence of skeletal maturity in males for the same bones. Females in our sample show a marked tendency toward skeletal maturity of all elements by 150 months of age, while males do not show the same tendency until approximately 200 months of age. In general within each sex, consecutive states of fusion show broad overlap in range of chronological age within each bone. Combining scores from several different bones enables a reasonable estimate of potential age in a test application of the model.
This study assesses chronological age of immature individuals from the degree of ossification evident in the foot skeleton. We considered all tarsal and ray bones in various combinations to determine the most sensitive indicators of chronological age. Skeletal maturity was rated according to a subjective but simple scoring system applied to radiographs of normal feet of children of known chronological age. Scales for assessing the primary center of ossification, secondary center of ossification, and state of fusion are defined. In general, as expected, females show earlier onset of skeletal maturity than males; in particular, females in our sample are skeletally mature in most elements beginning 48 months prior to the earliest incidence of skeletal maturity in males for the same bones. Females in our sample show a marked tendency toward skeletal maturity of all elements by 150 months of age, while males do not show the same tendency until approximately 200 months of age. In general within each sex, consecutive states of fusion show broad overlap in range of chronological age within each bone. Combining scores from several different bones enables a reasonable estimate of potential age in a test application of the model.
IntroductionThis study addresses the ossification process of the foot, a topic of great relevance within podiatry courses. Understanding the chronology of foot bone formation is essential for evaluating pathological processes and establishing appropriate therapeutic actions to improve patient quality of life. The main objectives of this work are to understand the ossification process of the foot bones and to propose an appropriate didactic methodology for effective learning of this process.Materials and MethodsThe individual ossification sequences of the foot bones were established and virtually recreated to make these processes more didactic and usable as teaching aids. The literature search was conducted using the PRISMA statement, focusing on terms, such as “bone ossification,” “foot,” and “bone development,” and included relevant studies from medical databases.ResultsUpdating the ossification ages and providing previously unavailable visual teaching material offers a useful tool for improving the teaching of this subject. It was found that, in general, the tarsal bones show significant differences in ossification ages between sexes, with later and slower ossification in males. These differences are statistically analyzed and presented in detailed comparative tables.ConclusionsThe use of innovative teaching tools, such as virtual anatomical models, helps students to better understand the ossification process of foot bones. Implementing these tools in the podiatry curriculum not only facilitates knowledge acquisition but also enhances the quality of teaching and, consequently, the future clinical practice of students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.