The neuromast is a sensory structure of the lateral line system in aquatic vertebrates, which consists of hair cells and supporting cells. Hair cells are mechanosensory cells, generally arranged with bidirectional polarity. Here, we describe a neuromast with hair cells arranged radially instead of bidirectionally in the first cranial neuromast of four teleost species: red seabream (Pagrus major), spotted halibut (Verasper variegatus), brown sole (Pseudopleuronectes herzensteini), and marbled sole (Pseudopleuronectes yokohamae). In these four species, this polarity was identified only in the first cranial neuromast, where it appeared at the rostral edge of the otic vesicle before hatching. We investigated the initial appearance and fate of this unique neuromast using scanning electron microscopy. We also assessed characteristics of radial neuromast pertaining to morphogenesis, development, and innervation using a vital fluorescent marker and immunohistochemistry in V. variegatus. The kinocilium initially appears at the center of each hair cell, then moves to its outer perimeter to form radial polarity by around 7 days postfertilization. However, hair cells arranged radially disappear about 15 days after hatching. This is followed by the appearance of bidirectionally arranged hair cells, indicating that polarity replacement from radial to bidirectional has occurred. In P. herzensteini, both afferent and efferent synapses between the nerve fibers and hair cells were observed by transmission electron microscopy, suggesting that radial neuromast is functional. Our discovery suggests that neuromasts with radial polarity could enable larval fish to assimilate multiaxial stimuli during this life stage, potentially assisting them in detecting small water vibrations or water pressure changes.