Au2+ is a simple but crucial model system for understanding the diverse catalytic activity of gold. While the Au2+ ground state (X2Σg+) is understood reasonably well from mass spectrometry and computations, no spectroscopic information is available for its first excited state (A2Σu+). Herein, we present the vibrationally resolved electronic spectrum of this state for cold Ar‐tagged Au2+ cations. This exceptionally low‐lying and well isolated A2Σ(u)+←X2Σ(g)+ transition occurs in the near‐infrared range. The observed band origin (5738 cm−1, 1742.9 nm, 0.711 eV) and harmonic Au−Au and Au−Ar stretch frequencies (201 and 133 cm−1) agree surprisingly well with those predicted by standard time‐dependent density functional theory calculations. The linearly bonded Ar tag has little impact on either the geometric or electronic structure of Au2+, because the Au2+⋅⋅⋅Ar bond (∼0.4 eV) is much weaker than the Au−Au bond (∼2 eV). As a result of 6 s←5d excitation of an electron from the antibonding σu* orbital (HOMO‐1) into the bonding σg orbital (SOMO), the Au−Au bond contracts substantially (by 0.1 Å).