The use of coal-derived activated carbon (AC) for water treatment applications demands more sustainable production methods, with chemical activation emerging as a promising alternative to thermal activation due to its higher AC quality, lower carbon burn-off, and higher yield. The study explored the effect of surface area, particle size and acid washing on the quality of AC derived from three seams of lower-rank Collie coal under the same activation conditions with potassium hydroxide (KOH). The quality of AC was determined by surface area and iodine number. The study demonstrates that Collie coal, suitable for AC production via KOH activation, yielded iodine numbers of 640 and 900 mg/g, with yields of 53 and 57 wt.%. Particle size influenced AC yield, with finer particle sizes yielding AC at 57–59 wt.%, whereas coarser ones yielded around 58–65 wt.%. SEM analysis shows the well-developed porous structure in Collie coal-derived activated carbons, with cleaner particles after acid washing. A positive correlation exists between coal surface area and AC iodine numbers, with higher values in coal samples correlating to increased iodine numbers in resulting AC. The regression model’s predicted values yield a coefficient of determination (R²) of 0.99.