We proposed a new approach to generate slow light transmission with large bandwidth and high buildup factor by using a soliton pulse propagating within integrated ring resonator circuit. The system consisted series of micron-size ring resonator fabricated by using nonlinear InGaAsP/InP material that are laterally coupled together. For convenience of analysis, optical transfer function for this model is obtained by using z-transform method. Slow light performances were modeled and discuss in this paper. Intensity buildup induced within the series of rings located at left and right sides of the system while strong nonlinear Kerr effect and mutual coupling leads to the spreading frequency bands within the device. Numerical simulation verifies that signal pulse with 45 ps relative delay time and bandwidth of 5.9 GHz (47 pm) are obtained at the communication wavelength around 1550 nm for a 100 ps signal pulse.