Let
$X$
be a finite-dimensional connected compact abelian group equipped with the normalized Haar measure
$\unicode[STIX]{x1D707}$
. We obtain the following mean ergodic theorem over ‘thin’ phase sets. Fix
$k\geq 1$
and, for every
$n\geq 1$
, let
$A_{n}$
be a subset of
$\mathbb{Z}^{k}\cap [-n,n]^{k}$
. Assume that
$(A_{n})_{n\geq 1}$
has
$\unicode[STIX]{x1D714}(1/n)$
density in the sense that
$\lim _{n\rightarrow \infty }(|A_{n}|/n^{k-1})=\infty$
. Let
$T_{1},\ldots ,T_{k}$
be ergodic automorphisms of
$X$
. We have
$$\begin{eqnarray}\frac{1}{|A_{n}|}\mathop{\sum }_{(n_{1},\ldots ,n_{k})\in A_{n}}f_{1}(T_{1}^{n_{1}}(x))\cdots f_{k}(T_{k}^{n_{k}}(x))\stackrel{L_{\unicode[STIX]{x1D707}}^{2}}{\longrightarrow }\int f_{1}\,d\unicode[STIX]{x1D707}\cdots \int f_{k}\,d\unicode[STIX]{x1D707},\end{eqnarray}$$
for any
$f_{1},\ldots ,f_{k}\in L_{\unicode[STIX]{x1D707}}^{\infty }$
. When the
$T_{i}$
are ergodic epimorphisms, the same conclusion holds under the further assumption that
$A_{n}$
is a subset of
$[0,n]^{k}$
for every
$n$
. The density assumption on the
$A_{i}$
is necessary. Immediate applications include certain Poincaré style recurrence results.