AbstractAuthorship profiling, i.e. revealing information about an unknown author by analyzing their text, is a task of growing importance. One of the most urgent problems of authorship profiling (AP) is selecting text parameters which may correlate to an author’s personality. Most researchers’ selection of these is not underpinned by any theory. This article proposes an approach to AP which applies neuroscience data. The aim of the study is to assess the probability of self-destructive behaviour of an individual via formal parameters of their texts. Here we have used the “Personality Corpus”, which consists of Russian-language texts. A set of correlations between scores on the Freiburg Personality Inventory scales that are known to be indicative of self-destructive behaviour (“Spontaneous Aggressiveness”, “Depressiveness”, “Emotional Lability”, and “Composedness”) and text variables (average sentence length, lexical diversity etc.) has been calculated. Further, a mathematical model which predicts the probability of self-destructive behaviour has been obtained.