A recent study hypothesized that avian-like wrist folding in quadrupedal dinosaurs could have aided their distinctive style of locomotion with semi-pronated and therefore medially facing palms. However, soft tissues that automatically guide avian wrist folding rarely fossilize, and automatic wrist folding of unknown function in extant crocodilians has not been used to test this hypothesis. Therefore, an investigation of the relative contributions of soft tissues to wrist range of motion (ROM) in the extant phylogenetic bracket of dinosaurs, and the quadrupedal function of crocodilian wrist folding, could inform these questions. Here, we repeatedly measured wrist ROM in degrees through fully fleshed, skinned, minus muscles/tendons, minus ligaments, and skeletonized stages in the American alligator Alligator mississippiensis and the ostrich Struthio camelus. The effects of dissection treatment and observer were statistically significant for alligator wrist folding and ostrich wrist flexion, but not ostrich wrist folding. Final skeletonized wrist folding ROM was higher than (ostrich) or equivalent to (alligator) initial fully fleshed ROM, while final ROM was lower than initial ROM for ostrich wrist flexion. These findings suggest that, unlike the hinge/ball and socket-type elbow and shoulder joints in these archosaurs, ROM within gliding/planar diarthrotic joints is more restricted to the extent of articular surfaces. The alligator data indicate that the crocodilian wrist mechanism functions to automatically lock their semi-pronated palms into a rigid column, which supports the hypothesis that this palmar orientation necessitated soft tissue stiffening mechanisms in certain dinosaurs, although ROM-restricted articulations argue against the presence of an extensive automatic mechanism.