It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation-π interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.polyelectrolyte complexes | complex coacervates | cation-π interaction | like-charged coacervate | surface forces apparatus I t is well known that polyelectrolyte complexes can be formed when oppositely charged polyelectrolytes are mixed in aqueous solutions (1-4). This often leads to fluid-fluid phase separation, the so-called complex coacervation, namely, the appearance of a dense polyelectrolyte-rich liquid phase (coacervate phase) and a more dilute solution phase (aqueous phase, Fig. 1) (3, 4). The formation of polyelectrolyte complexes or coacervate can be impacted by many factors, including structural features of the component polymers (e.g., molecular weight, charge density, functional groups, hydrophilicity and hydrophobicity balance, etc.), mixing ratio and concentration of the oppositely charged polyelectrolytes, and solution and environmental conditions (e.g., pH, ionic strength, temperature, etc.) (3-5).Complex coacervate, which was suggested as "the origin of life" (6), finds application in many engineering and biological systems, such as microencapsulation in food, and in pharmaceutical and cosmetic industries due to the low interfacial energy of the coacervate phase (3,5,(7)(8)(9). Complex coacervate also plays a critical role in the underwater adhesion of many sessile marine organisms such as tubeworms and mussels, which secrete and disperse adhesive proteins to form complex coacervates that facilitate their positioning and spreading over a desired substrate under seawater (10-12).It is believed that polyelectrolyte complexation is driven by mainly electrostatic attraction in long distances between oppositely charged polymer chains in water and by additional molecular recognition driving forces such as chirality, hydrogen bonding, and hydration in short distances, implying that the polyelectrolyte complex is composed of at least one polycation ...